Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Health Organ Manag ; ahead-of-print(ahead-of-print)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38526451

RESUMO

PURPOSE: The Covid-19 pandemic generated significant changes in the operating methods of hospital logistics departments. The objective of this research is to understand how these changes took place, what collaboration mechanisms were developed with clinical authorities and, to what extent, logistics and clinical care activities should be decoupled to maximize each area's contribution? DESIGN/METHODOLOGY/APPROACH: The case study is selected to investigate practices implemented during the COVID-19 pandemic in hospitals in Canada. The pandemic presented an opportunity to contrast practices implemented in response to this crisis with those historically used in this environment. FINDINGS: The strategy of decoupling logistical tasks of an operational nature from clinical activities is well-founded and helps free clinical staff from tasks for which they are not trained. However, the decoupling of operational tasks should be combined with an integration of the clinical information flow to the logistics hub players. With this clinical information, the logistics hub can generate its full potential enabling better inventory management decisions to be made. ORIGINALITY/VALUE: The concept of decoupling is studied to identify configurations that offer the best benefits for clinical staff.


Assuntos
COVID-19 , Pandemias , Humanos , Hospitais , COVID-19/epidemiologia , Canadá , Processos Grupais
2.
Sci Rep ; 13(1): 21920, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38081907

RESUMO

Earthworms are known to stimulate soil greenhouse gas (GHG) emissions, but the majority of previous studies have used simplified model systems or lacked continuous high-frequency measurements. To address this, we conducted a 2-year study using large lysimeters (5 m2 area and 1.5 m soil depth) in an ecotron facility, continuously measuring ecosystem-level CO2, N2O, and H2O fluxes. We investigated the impact of endogeic and anecic earthworms on GHG emissions and ecosystem water use efficiency (WUE) in a simulated agricultural setting. Although we observed transient stimulations of carbon fluxes in the presence of earthworms, cumulative fluxes over the study indicated no significant increase in CO2 emissions. Endogeic earthworms reduced N2O emissions during the wheat culture (- 44.6%), but this effect was not sustained throughout the experiment. No consistent effects on ecosystem evapotranspiration or WUE were found. Our study suggests that earthworms do not significantly contribute to GHG emissions over a two-year period in experimental conditions that mimic an agricultural setting. These findings highlight the need for realistic experiments and continuous GHG measurements.


Assuntos
Gases de Efeito Estufa , Oligoquetos , Animais , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Ecossistema , Óxido Nitroso , Solo , Produção Agrícola , Metano/análise
3.
Healthc Manage Forum ; 35(2): 48-52, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35089098

RESUMO

Like other Canadian provinces, Quebec managed shortages of Personal Protective Equipment (PPE) in the early weeks of the COVID-19 pandemic. Two years later, with hindsight, what lessons can we learn from this logistics crisis? It is precisely to better understand the decisions made by the supply chain players in the province of Quebec that this paper was written. To fully understand the events, this paper first describes the Quebec healthcare system. Then it retraces the series of events and actions during the first wave, at a time when it was most challenging to procure PPE. It also specifies the main characteristics of the supply chain in the Quebec healthcare sector. Finally, it analyzed these data to come up with recommendations to help public decision makers adopt better supply chain management practices.


Assuntos
COVID-19 , Equipamento de Proteção Individual , Canadá , Humanos , Pandemias , Quebeque/epidemiologia , SARS-CoV-2
4.
Ecol Evol ; 11(21): 15174-15190, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765169

RESUMO

Across the globe, ecological communities are confronted with multiple global environmental change drivers, and they are responding in complex ways ranging from behavioral, physiological, and morphological changes within populations to changes in community composition and food web structure with consequences for ecosystem functioning. A better understanding of global change-induced alterations of multitrophic biodiversity and the ecosystem-level responses in terrestrial ecosystems requires holistic and integrative experimental approaches to manipulate and study complex communities and processes above and below the ground. We argue that mesocosm experiments fill a critical gap in this context, especially when based on ecological theory and coupled with microcosm experiments, field experiments, and observational studies of macroecological patterns. We describe the design and specifications of a novel terrestrial mesocosm facility, the iDiv Ecotron. It was developed to allow the setup and maintenance of complex communities and the manipulation of several abiotic factors in a near-natural way, while simultaneously measuring multiple ecosystem functions. To demonstrate the capabilities of the facility, we provide a case study. This study shows that changes in aboveground multitrophic interactions caused by decreased predator densities can have cascading effects on the composition of belowground communities. The iDiv Ecotrons technical features, which allow for the assembly of an endless spectrum of ecosystem components, create the opportunity for collaboration among researchers with an equally broad spectrum of expertise. In the last part, we outline some of such components that will be implemented in future ecological experiments to be realized in the iDiv Ecotron.

5.
Glob Chang Biol ; 27(7): 1387-1407, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33274502

RESUMO

Ecosystems integrity and services are threatened by anthropogenic global changes. Mitigating and adapting to these changes require knowledge of ecosystem functioning in the expected novel environments, informed in large part through experimentation and modelling. This paper describes 13 advanced controlled environment facilities for experimental ecosystem studies, herein termed ecotrons, open to the international community. Ecotrons enable simulation of a wide range of natural environmental conditions in replicated and independent experimental units while measuring various ecosystem processes. This capacity to realistically control ecosystem environments is used to emulate a variety of climatic scenarios and soil conditions, in natural sunlight or through broad-spectrum lighting. The use of large ecosystem samples, intact or reconstructed, minimizes border effects and increases biological and physical complexity. Measurements of concentrations of greenhouse trace gases as well as their net exchange between the ecosystem and the atmosphere are performed in most ecotrons, often quasi continuously. The flow of matter is often tracked with the use of stable isotope tracers of carbon and other elements. Equipment is available for measurements of soil water status as well as root and canopy growth. The experiments ran so far emphasize the diversity of the hosted research. Half of them concern global changes, often with a manipulation of more than one driver. About a quarter deal with the impact of biodiversity loss on ecosystem functioning and one quarter with ecosystem or plant physiology. We discuss how the methodology for environmental simulation and process measurements, especially in soil, can be improved and stress the need to establish stronger links with modelling in future projects. These developments will enable further improvements in mechanistic understanding and predictive capacity of ecotron research which will play, in complementarity with field experimentation and monitoring, a crucial role in exploring the ecosystem consequences of environmental changes.


Assuntos
Ecossistema , Ciência Ambiental , Biodiversidade , Ecologia , Solo
6.
Plants (Basel) ; 9(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854373

RESUMO

The circadian clock is a molecular timer of metabolism that affects the diurnal pattern of stomatal conductance (gs), amongst other processes, in a broad array of plant species. The function of circadian gs regulation remains unknown and here, we test whether circadian regulation helps to optimize diurnal variations in stomatal conductance. We subjected bean (Phaseolus vulgaris) and cotton (Gossypium hirsutum) canopies to fixed, continuous environmental conditions of photosynthetically active radiation, temperature, and vapour pressure deficit (free-running conditions) over 48 h. We modelled gs variations in free-running conditions to test for two possible optimizations of stomatal behaviour under circadian regulation: (i) that stomata operate to maintain constant marginal water use efficiency; or (ii) that stomata maximize C net gain minus the costs or risks of hydraulic damage. We observed that both optimization models predicted gs poorly under free-running conditions, indicating that circadian regulation does not directly lead to stomatal optimization. We also demonstrate that failure to account for circadian variation in gs could potentially lead to biased parameter estimates during calibrations of stomatal models. More broadly, our results add to the emerging field of plant circadian ecology, where circadian controls may partially explain leaf-level patterns observed in the field.

8.
J Exp Bot ; 71(1): 370-385, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557303

RESUMO

Extreme climatic events (ECEs) such as droughts and heat waves affect ecosystem functioning and species turnover. This study investigated the effect of elevated CO2 on species' resilience to ECEs. Monoliths of intact soil and their plant communities from an upland grassland were exposed to 2050 climate scenarios with or without an ECE under ambient (390 ppm) or elevated (520 ppm) CO2. Ecophysiological traits of two perennial grasses (Dactylis glomerata and Holcus lanatus) were measured before, during, and after ECE. At similar soil water content, leaf elongation was greater under elevated CO2 for both species. The resilience of D. glomerata increased under enhanced CO2 (+60%) whereas H. lanatus mostly died during ECE. D. glomerata accumulated 30% more fructans, which were more highly polymerized, and 4-fold less sucrose than H. lanatus. The fructan concentration in leaf meristems was significantly increased under elevated CO2. Their relative abundance changed during the ECE, resulting in a more polymerized assemblage in H. lanatus and a more depolymerized assemblage in D. glomerata. The ratio of low degree of polymerization fructans to sucrose in leaf meristems was the best predictor of resilience across species. This study underlines the role of carbohydrate metabolism and the species-dependent effect of elevated CO2 on the resilience of grasses to ECE.


Assuntos
Metabolismo dos Carboidratos , Mudança Climática , Dactylis/fisiologia , Clima Extremo , Holcus/fisiologia , Meristema/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Clima , Especificidade da Espécie
9.
PLoS One ; 14(1): e0204715, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30703101

RESUMO

Numerous experiments have shown positive diversity effects on plant productivity, but little is known about related processes of carbon gain and allocation. We investigated these processes in a controlled environment (Montpellier European Ecotron) applying a continuous 13CO2 label for three weeks to 12 soil-vegetation monoliths originating from a grassland biodiversity experiment (Jena Experiment) and representing two diversity levels (4 and 16 sown species). Plant species richness did not affect community- and species-level 13C abundances neither in total biomass nor in non-structural carbohydrates (NSC). Community-level 13C excess tended to be higher in the 16-species than in the 4-species mixtures. Community-level 13C excess was positively related to canopy leaf nitrogen (N), i.e. leaf N per unit soil surface. At the species level, shoot 13C abundances varied among plant functional groups and were larger in legumes and tall herbs than in grasses and small herbs, and correlated positively with traits as leaf N concentrations, stomatal conductance and shoot height. The 13C abundances in NSC were larger in transport sugars (sucrose, raffinose-family oligosaccharides) than in free glucose, fructose and compounds of the storage pool (starch) suggesting that newly assimilated carbon is to a small portion allocated to storage. Our results emphasize that the functional composition of communities is key in explaining carbon assimilation in grasslands.


Assuntos
Biodiversidade , Isótopos de Carbono/metabolismo , Pradaria , Poaceae/metabolismo , Solo/química , Isótopos de Carbono/análise , Nitrogênio/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Poaceae/química , Açúcares/metabolismo
10.
Nat Ecol Evol ; 2(2): 279-287, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29335575

RESUMO

Many scientific disciplines are currently experiencing a 'reproducibility crisis' because numerous scientific findings cannot be repeated consistently. A novel but controversial hypothesis postulates that stringent levels of environmental and biotic standardization in experimental studies reduce reproducibility by amplifying the impacts of laboratory-specific environmental factors not accounted for in study designs. A corollary to this hypothesis is that a deliberate introduction of controlled systematic variability (CSV) in experimental designs may lead to increased reproducibility. To test this hypothesis, we had 14 European laboratories run a simple microcosm experiment using grass (Brachypodium distachyon L.) monocultures and grass and legume (Medicago truncatula Gaertn.) mixtures. Each laboratory introduced environmental and genotypic CSV within and among replicated microcosms established in either growth chambers (with stringent control of environmental conditions) or glasshouses (with more variable environmental conditions). The introduction of genotypic CSV led to 18% lower among-laboratory variability in growth chambers, indicating increased reproducibility, but had no significant effect in glasshouses where reproducibility was generally lower. Environmental CSV had little effect on reproducibility. Although there are multiple causes for the 'reproducibility crisis', deliberately including genetic variability may be a simple solution for increasing the reproducibility of ecological studies performed under stringently controlled environmental conditions.


Assuntos
Brachypodium/genética , Genótipo , Medicago truncatula/genética , Projetos de Pesquisa , Brachypodium/crescimento & desenvolvimento , Meio Ambiente , Europa (Continente) , Medicago truncatula/crescimento & desenvolvimento , Reprodutibilidade dos Testes , Projetos de Pesquisa/estatística & dados numéricos
12.
Sci Rep ; 7(1): 8392, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814757

RESUMO

Models predict that vertical gradients of foliar nitrogen (N) allocation, increasing from bottom to top of plant canopies, emerge as a plastic response to optimise N utilisation for carbon assimilation. While this mechanism has been well documented in monocultures, its relevance for mixed stands of varying species richness remains poorly understood. We used 21 naturally assembled grassland communities to analyse the gradients of N in the canopy using N allocation coefficients (K N ) estimated from the distribution of N per foliar surface area (KN-F) and ground surface area (KN-G). We tested whether: 1) increasing plant species richness leads to more pronounced N gradients as indicated by higher K N -values, 2) K N is a good predictor of instantaneous net ecosystem CO2 exchange and 3) functional diversity of leaf N concentration as estimated by Rao's Q quadratic diversity metric is a good proxy of K N . Our results show a negative (for KN-G) or no relationship (for KN-F) between species richness and canopy N distribution, but emphasize a link (positive relationship) between more foliar N per ground surface area in the upper layers of the canopy (i.e. under higher KN-G) and ecosystem CO2 uptake. Rao's Q was not a good proxy for either K N .

13.
Plant Cell Environ ; 40(7): 1153-1162, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28098350

RESUMO

There is increasing evidence that the circadian clock is a significant driver of photosynthesis that becomes apparent when environmental cues are experimentally held constant. We studied whether the composition of photosynthetic pigments is under circadian regulation, and whether pigment oscillations lead to rhythmic changes in photochemical efficiency. To address these questions, we maintained canopies of bean and cotton, after an entrainment phase, under constant (light or darkness) conditions for 30-48 h. Photosynthesis and quantum yield peaked at subjective noon, and non-photochemical quenching peaked at night. These oscillations were not associated with parallel changes in carbohydrate content or xanthophyll cycle activity. We observed robust oscillations of Chl a/b during constant light in both species, and also under constant darkness in bean, peaking when it would have been night during the entrainment (subjective nights). These oscillations could be attributed to the synthesis and/or degradation of trimeric light-harvesting complex II (reflected by the rhythmic changes in Chl a/b), with the antenna size minimal at night and maximal around subjective noon. Considering together the oscillations of pigments and photochemistry, the observed pattern of changes is counterintuitive if we assume that the plant strategy is to avoid photodamage, but consistent with a strategy where non-stressed plants maximize photosynthesis.


Assuntos
Ritmo Circadiano/fisiologia , Gossypium/fisiologia , Phaseolus/fisiologia , Fotossíntese/fisiologia , Pigmentos Biológicos/metabolismo , Metabolismo dos Carboidratos , Clorofila/metabolismo , Clorofila A , Folhas de Planta/metabolismo
14.
Ecology ; 97(8): 2044-2054, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27859204

RESUMO

The impact of species richness and functional diversity of plants on ecosystem water vapor fluxes has been little investigated. To address this knowledge gap, we combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/monoliths originating from a long-term biodiversity experiment (The Jena Experiment) and a modeling approach. Our goals were (1) quantifying the impact of plant species richness (four vs. 16 species) on day- and nighttime ecosystem water vapor fluxes; (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model; and (3) identifying the most parsimonious predictors of water vapor fluxes using plant functional-trait-based metrics such as functional diversity and community weighted means. Daytime measured and modeled evapotranspiration were significantly higher in the higher plant diversity treatment, suggesting increased water acquisition. The SW model suggests that, at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while, at higher species richness, the proportion of ecosystem transpiration (a productivity-related water flux) increased. While it is well established that LAI controls ecosystem transpiration, here we also identified that the diversity of leaf nitrogen concentration among species in a community is a consistent predictor of ecosystem water vapor fluxes during daytime. The results provide evidence that, at the peak of the growing season, higher leaf area index (LAI) and lower percentage of bare ground at high plant diversity diverts more of the available water to transpiration, a flux closely coupled with photosynthesis and productivity. Higher rates of transpiration presumably contribute to the positive effect of diversity on productivity.


Assuntos
Biodiversidade , Pradaria , Plantas , Ecologia , Ecossistema , Modelos Teóricos , Vapor , Água
15.
Gigascience ; 5(1): 43, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27765071

RESUMO

BACKGROUND: Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO2 and H2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (no variation in temperature, radiation, or other environmental cues). RESULTS: We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20-79 % of the daily variation range in CO2 and H2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8-17 % in commonly used stomatal conductance models. CONCLUSIONS: Our results show that circadian controls affect diurnal CO2 and H2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Circadian controls act as a 'memory' of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.


Assuntos
Dióxido de Carbono/análise , Ritmo Circadiano , Folhas de Planta/metabolismo , Água/análise , Relógios Circadianos , Ecossistema , Gossypium/fisiologia , Phaseolus/fisiologia , Fotossíntese , Estômatos de Plantas/metabolismo
16.
Proc Natl Acad Sci U S A ; 113(22): 6224-9, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27185934

RESUMO

Extreme climatic events (ECEs) such as droughts and heat waves are predicted to increase in intensity and frequency and impact the terrestrial carbon balance. However, we lack direct experimental evidence of how the net carbon uptake of ecosystems is affected by ECEs under future elevated atmospheric CO2 concentrations (eCO2). Taking advantage of an advanced controlled environment facility for ecosystem research (Ecotron), we simulated eCO2 and extreme cooccurring heat and drought events as projected for the 2050s and analyzed their effects on the ecosystem-level carbon and water fluxes in a C3 grassland. Our results indicate that eCO2 not only slows down the decline of ecosystem carbon uptake during the ECE but also enhances its recovery after the ECE, as mediated by increases of root growth and plant nitrogen uptake induced by the ECE. These findings indicate that, in the predicted near future climate, eCO2 could mitigate the effects of extreme droughts and heat waves on ecosystem net carbon uptake.


Assuntos
Ciclo do Carbono/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Carbono/metabolismo , Secas , Temperatura Alta , Folhas de Planta/crescimento & desenvolvimento , Solo/química , Mudança Climática , Pradaria , Folhas de Planta/efeitos dos fármacos
17.
Environ Sci Pollut Res Int ; 22(20): 16215-28, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26315587

RESUMO

The infrastructure for Analysis and Experimentation on Ecosystems (AnaEE-France) is an integrated network of the major French experimental, analytical, and modeling platforms dedicated to the biological study of continental ecosystems (aquatic and terrestrial). This infrastructure aims at understanding and predicting ecosystem dynamics under global change. AnaEE-France comprises complementary nodes offering access to the best experimental facilities and associated biological resources and data: Ecotrons, seminatural experimental platforms to manipulate terrestrial and aquatic ecosystems, in natura sites equipped for large-scale and long-term experiments. AnaEE-France also provides shared instruments and analytical platforms dedicated to environmental (micro) biology. Finally, AnaEE-France provides users with data bases and modeling tools designed to represent ecosystem dynamics and to go further in coupling ecological, agronomical, and evolutionary approaches. In particular, AnaEE-France offers adequate services to tackle the new challenges of research in ecotoxicology, positioning its various types of platforms in an ecologically advanced ecotoxicology approach. AnaEE-France is a leading international infrastructure, and it is pioneering the construction of AnaEE (Europe) infrastructure in the field of ecosystem research. AnaEE-France infrastructure is already open to the international community of scientists in the field of continental ecotoxicology.


Assuntos
Sistemas Ecológicos Fechados , Ecotoxicologia/instrumentação , Microbiologia Ambiental , Modelos Biológicos , Animais , Simulação por Computador , Ecologia , Ecossistema , Europa (Continente) , França , Humanos , Invertebrados , Pesquisa
18.
Sci Rep ; 5: 10975, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26074373

RESUMO

Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.


Assuntos
Gossypium/fisiologia , Modelos Estatísticos , Phaseolus/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Água/química , Atmosfera , Dióxido de Carbono/química , Ecossistema , Fotoperíodo , Solo/química , Temperatura , Volatilização , Água/metabolismo
19.
Nat Commun ; 6: 6707, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25848862

RESUMO

Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon.


Assuntos
Biodiversidade , Carbono , Pradaria , Plantas , Microbiologia do Solo , Solo/química , Radioisótopos de Carbono , Ecossistema , Alemanha
20.
Ecol Lett ; 17(4): 435-44, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24393400

RESUMO

Little is known about the role of plant functional diversity for ecosystem-level carbon (C) fluxes. To fill this knowledge gap, we translocated monoliths hosting communities with four and 16 sown species from a long-term grassland biodiversity experiment ('The Jena Experiment') into a controlled environment facility for ecosystem research (Ecotron). This allowed quantifying the effects of plant diversity on ecosystem C fluxes as well as three parameters of C uptake efficiency (water and nitrogen use efficiencies and apparent quantum yield). By combining data on ecosystem C fluxes with vegetation structure and functional trait-based predictors, we found that increasing plant species and functional diversity led to higher gross and net ecosystem C uptake rates. Path analyses and light response curves unravelled the diversity of leaf nitrogen concentration in the canopy as a key functional predictor of C fluxes, either directly or indirectly via LAI and aboveground biomass.


Assuntos
Ciclo do Carbono , Carbono/metabolismo , Ecossistema , Plantas/metabolismo , Biodiversidade , Folhas de Planta/química , Plantas/química , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...